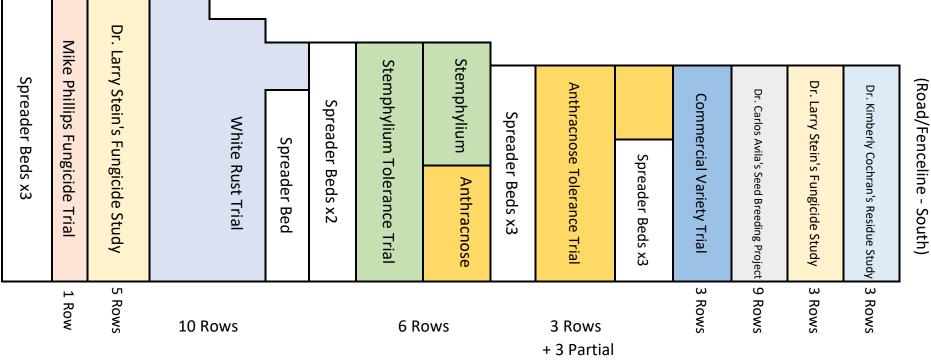


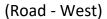
Wintergarden Spinach Producers Board

2023 Spinach Field Day February 22, 2023 10:00 a.m. – 1:00 p.m. Tiro Tres Farms – Crystal City, TX

2022-2023 White Rust Trial

Coordinated by: Larry Stein, Paige Ritchie and Maribel Alonzo Texas A&M AgriLife Extension Service All photos provided by Paige Ritchie, Tiro Tres Farms


Agenda


10:00 a.m. - 1 :00 p.m.

Larry Stein	Introductions Texas A&M AgriLife Extension Service, Uvalde
Ed Ritchie	Welcome President of Wintergarden Spinach Producers Board
Leslie Dominguez	CEUs Zavala County, CEA Agriculture Texas A&M AgriLife Extension Service
Larry Stein	Tour Overview of the Research Trials, Cone Planter, White Rust Control Trial
Mike Phillips	Overview of Fungicide Control Trial Stemphylium
Lindsey Du Toit and Kayla Spawton	Cargile Consulting Overview of Stemphylium Screening Trials Washington State University
Kimberly Cochran	Overview of Anthracnose Screening Texas A&M AgriLife Extension Service, Uvalde
Carlos Avila	Potential Spinach Seed for Grain Texas A&M AgriLife Research, Weslaco
Field Tour of research	plots
Lunch	
Recognition of Sponso	ors
Group Photo	
Evaluation	
<u>You are welcom</u>	e to
<u>stay after 1:00</u>	pm

2023 White Rust Nursery

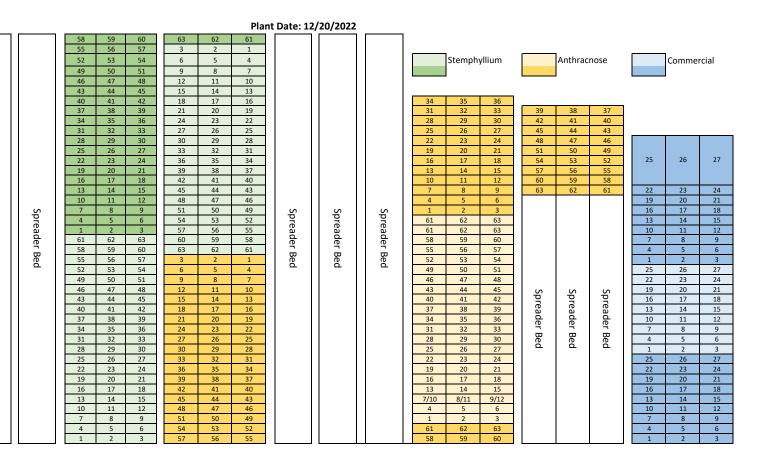
THIS PAGE LEFT BLANK

WHITE RUST TRIAL 2022-23

Plant Date: 12/1/2022

D15	D16	Row 2				Roy	w 4													Farms
D13	D14		017	B45	B46					Ro	w 6									
D11	D12		019	B43	B44	B48	B47	1145	114.6	1140	1147			D -						Janns
D9	D10 D8		021	B41	B42 B40	B50	B49	H15 H13	H16 H14	H18 H20	H17 H19	F37	F38	RO	w 8			Row 10	1	
D5/7 D5/7	D8 D6		023	B39 B37	B38	B52 B54	B51 B53	H13 H11	H14 H12	0	11	F37	F38 F36	F40	F39			KOW 10		
D3/7	D6 D4		7/29	B37 B35	B38 B36	B54 B56	B53 B55	HII H9	H12 H10	A2	A1	F35	F36 F34	F40 F42	F39 F41	W117	W116			
D1	D4 D2		7/29	B33	B34	B58	B55 B57	H7	H8	A4	A3	F31	F32	F44	F43	W117 W115	W110 W114	W118 W119		
C5	0		1/33	B33 B31	B34 B32	B58 B60	B59	H5	H6	0	A5	F29	F30	F46	F45	W113 W113	W114 W112	W120 W121		
C3	C4		1/33	B29	B30	B62	B61	H3	H4	B2	B1	F27	F28	F48	F47	W113 W111	W112 W110	W120 W121 W122 W123		
C1	C2		035	B27	B28	B64	B63	H1	H2	B4	B3	F25	F26	F50	F49	W109	W108	W124 W125		
B75	0		037	B25	B26	B66	B65	G7	0	B6	B5	F23	F24	F52	F51	W105	W106	W126 W127		
B73	B74		039	B23	B24	B68	B67	G5	G6	B8	B7	F21	F22	F54	F53	W105	W100	W128 W129		
B71	B72		041	B21	B22	B70	B69	G3	G4	B10	B9	F19	F20	F56	F55	W103	W102	W130 W131		
B69	B70		043	B19	B20	B72	B71	G1	G2	B12	B11	F17	F18	F58	F57	W101	W100	W132 W133		
B67	B68	D46 D4	045	B17	B18	B74	B73	F75	0	B14	B13	F15	F16	F60	F59	W99	W98	W134 W135		
B65	B66	D48 D4	047	B15	B16	0	B75	F73	F74	B16	B15	F13	F14	F62	F61	W97	W96	W136 W137		
B63	B64	D50 D4	049	B13	B14	C2	C1	F71	F72	B18	B17	F11	F12	F64	F63	W95	W94	W138 W139		
B61	B62	E2 E	E1	B11	B12	C4	C3	F69	F70	B20	B19	F9	F10	F66	F65	W93	W92	W140 W141		
B59	B60	E4 E	E3	B9	B10	0	C5	F67	F68	B22	B21	F7	F8	F68	F67	W91	W90	W142 W143		
B57	B58	E6 E	E5	B7	B8	D2	D1	F65	F66	B24	B23	F5	F6	F70	F69	W89	W88	W144 W145		
B55	B56	E8 E	E7	B5	B6	D4	D3	F63	F64	B26	B25	F3	F4	F72	F71	W87	W86	W146 W147		
B53	B54	E10 E	E9	B3	B4	D6	D5	F61	F62	B28	B27	F1	F2	F74	F73	W85	W84	W148 W149		
B51	B52		11	B1	B2	D8	D7	F59	F60	B30	B29	E11	0	0	F75	W83	W82	W150 W151	S	S
B49	B50		F1	A5	0	D10	D9	F57	F58	B32	B31	E9	E10	G2	G1	W81	W80	W152 W153	σ	σ
B47	B48		F3	A3	A4	D12	D11	F55	F56	B34	B33	E7	E6/8	G4	G3	W79	W78		Spreader	Spreader
B45	B46		F5	A1	A2	D14	D13	F53	F54	B36	B35	E5	E6/8	G6	G5	W77	W76		ä	ä
B43	B44		F7	11	0	D16	D15	F51	F52	B38	B37	E3	E4	0	G7	W75	W74		a	<u>a</u>
B41	B42	-	F9	H19	H20	D18	D17	F49	F50	B40	B39	E1	E2	H2	H1	W73	W72		er	er
B39	B40		11	H17	H18	D20	D19	F47	F48	B42	B41	D49	D50	H4	H3	W71	W70			
B37	B38		13	H15	H16	D22	D21	F45	F46	B44	B43	D47	D48	H6	H5	W69	W68		Bed	Bed
B35 B33	B36 B34		15 17	H13 H11	H14 H12	D24 D26	D23 D25	F43 F41	F44 F42	B46 B48	B45 B47	D45 D43	D46	H8	H7	W67 W65	W66		ä	ä
	-	-	19		H12 H10		D25 D27	F41 F39	F42 F40		B47 B49	D43 D41	D44 D42	H10 H12	H9		W64			
B31 B29	B32 B30		-19	H9 H7	H10 H8	D28 D30	D27 D29	F39 F37	F40 F38	B50 B52	B49 B51	D41 D39	D42 D40	H12 H14	H11 H13	W63 W61	W62 W60	Ś		
B29 B27	B30 B28		-21	H5	H8 H6	D30	D29 D31	F37 F35	F38 F36	B52 B54	B51 B53	D39 D37	D40 D38	H14 H16	H13 H15	W51	W58	Ğ		
B27 B25	B26		25	H3	H6 H4	D32	D31 D33	F33	F30	B56	B55	D37	D36	H18	H15 H17	W59 W57	W56	- F		
B23	B20 B24	-	27	H1	H2	D34	D35	F31	F32	B58	B55 B57	D33	D30	H20	H19	W55	W50	ä		
B21	B22		9/31	G7	0	D38	D35	F29	F30	B60	B59	D31	D34	0	1115	W53	W54	Spreader		
B19	B20		9/31	G5	G6	D40	D39	F27	F28	B62	B61	D29	D30	0	W1	W51	W50	er		
B17	B18		1/33	G3	G4	D42	D41	F25	F26	B64	B63	D27	D28	W2	W3	W49	W48			
B15	B16		-35	G1	G2	D44	D43	F23	F24	B66	B65	D25	D26	W4	W5	W47	W46	Bed		
B13	B14		37	F75	0	D46	D45	F21	F22	B68	B67	D23	D24	W6	W7	W45	W44	ă		
B11	B12		39	F73	F74	D48	D47	F19	F20	B70	B69	D21	D22	W8	W9	W43	W42			
B9	B10	F42 F4	41	F71	F72	D50	D49	F17	F18	B72	B71	D19	D20	W10	W11	W41	W40			
B7	B8	F44 F4	43	F69	F70	E2	E1	F15	F16	B74	B73	D17	D18	W12	W13	W39	W38			
B5	B6	F46 F4	45	F67	F68	E4	E3	F13	F14	0	B75	D15	D16	W14	W15	W37	W36			
B3	B4	F48 F4	47	F65	F66	E6	E5	F11	F12	C2	C1	D13	D14	W16	W17	W35	W34			
B1	B2	F50 F4	49	F63	F64	E8	E7	F9	F10	C4	C3	D11	D12	W18	W19	W33	W32			
A5	0		51	F61	F62	E10	E9	F7	F8	0	C5	D9	D10	W20	W21	W31	W30			
A3	A4		53	F59	F60	0	E11	F5	F6	D2	D1	D7	D8	W22	W23	W29	W28			
A1	A2	F56 F5	55	F57	F58	F2	F1	F3	F4	D4	D3	D5	D6	W24	W25	W27	W26			

Row 1


Row 3

Row 5

Row 7

PERCE

STEMPHYLIUM/ANTHRACNOSE/COMMERCIAL TRIAL LAYOUT 2022-23

Spreader Bed

Stemphylium/Anthracnose Tolerance Trial

Plant Date: 12/20/2022

Seminis/BAYER Rangitoto Nunhems/BASF Regor

Zisa

62 63

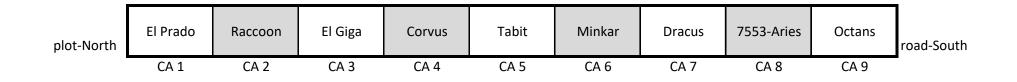
Vilmorin

#	Cood Common	Variaty	Com	Coodcourt	Tracted	Treatment
# 1	Seed Company Enza	Variety E03D 1096	Germ 79	~72,000	no	Treatment
2	Seminis/BAYER	Mykonos	86		ves	Thiram
3	Nunhems/BASF	Nembus	80	55,542	-	Thirdin
4	Nunhems/BASF	Volans		54,259		
5	Nunhems/BASF	Nun 7553 Aries		53,990	no	
6	Rijk Zwaan	51-IN539		52,817	yes	Maxim 480FS
7	Pop Vriend	Colusa	94		no	
8	Rijk Zwaan	51-or200	74	51,149	no	
9	Nunhems/BASF	Scorpius			no	
10	Pop Vriend	PV1611	96	-	no	
11	Pop Vriend	Laredo	97		no	
12	Pop Vriend	PV1664	96	-	no	
13	Pop Vriend	Cocopah	94	- 1 -	no	
14	Pop Vriend	Nevada	94		no	
14	Enza	E03D 1084	99	-	no	
15	Pop Vriend	Skarne PV1656	98			
10	Enza		98			
17		Traverse PV1526		,	no	
-	Pop Vriend Pop Vriend		94			
9		PV1719	94 99			
20	Enza	Longhorn			no	Thing the Action of the
21	Rijk Zwaan	Baboon (51-529)	93		yes	Thiram 480 Apron XL
22	Pop Vriend	Dallas	94		no	
23	Pop Vriend	Denton PV1617	98	1		
4	Pop Vriend	PV1569	95	, -	no	
5	Pop Vriend	Harmonica	95		no	
6	Pinnacle	E6T		40,000		
7	Rijk Zwaan	Tarsier (51-728)	93	- /	no	
8	Rijk Zwaan	51-se730		39,501	no	
9	Pop Vriend	Bandera	94		no	
)	Pop Vriend	Onyx PV1713	92	/	no	
1	Rijk Zwaan	Boxfish (51-370)	87	1	no	
2	Pop Vriend	Quartz PV1720	95	- ,	no	
3	Nunhems/BASF	Callisto		34,149	no	
4	Rijk Zwaan	Aardvark (51-376)		33,419	no	
5	Nunhems/BASF	Nun 07557		30,650	no	
6	Nunhems/BASF	Minkar		30,550	no	
7	Nunhems/BASF	Formax		30,478	no	
8	Rijk Zwaan	Bonnethead (51-722)	95	30,385	no	
9	Nunhems/BASF	Alcor		30,128	no	
0	Nunhems/BASF	Tabit			no	
1	Вејо	Patton	92	, -	no	
2	Pinnacle	2051		29,112	no	
3	Pop Vriend	PV1716	96	29,077	no	
4	Nunhems/BASF	Crater		28,936	no	
5	Pop Vriend	PV1610	97	28,553	no	
6	Rijk Zwaan	51-se734		28,201	yes	Apron XL: Metalaxyl M
7	Вејо	Pershing	94	28,189	no	
8	Enza	Crosstrek	91	26,858	no	
9	Pop Vriend	Opal PV1718	98	26,706	no	
)	Enza	Frontier	94	26,471	no	
1	Seminis/BAYER	Kona	96	25,954	yes	F300
2	Seminis/BAYER	Motutapu	87	25,669	yes	Thiram
3	Enza	E03D 1078	94		no	
4	Nunhems/BASF	Dracus		24,928		
5	Pop Vriend	Kiowa	96			
6	Seminis/BAYER	Jolo	95	-		Thiram
7	Nunhems/BASF	Canopus		23,401	no	
, 8	Vilmorin	Fulla			no	1
9	Vilmorin	Odin		~23,000		
0	Nunhems/BASF	Corvus		22,682		
<u> </u>	Seminis/BAYER	Rangitoto	95		yes	Thiram
	Nunhems/BASE	, , , , , , , , , , , , , , , , , , ,		21 572		
62		Redor				

21,572 no

~18,000 no

Commercial Showcase


Plant Date: 12/20/2022 Plant Population: 2 mil

#	Seed Company	Variety	Germ	Seedcount	Treated	Treatment
1	Seminis/BAYER	Mykonos	86	70,620	yes	Thiram
2	Nunhems/BASF	Tabit	96	56,408	no	
3	Rijk Zwaan	51-737		54,102	no	
4	Nunhems/BASF	Aries Nun 07553	97	53,990	no	
5	Rijk Zwaan	Yakalo (51-729)	95	49,443	no	
6	Pop Vriend	PV1664	96	46,327	no	
7	Pop Vriend	Cocopah	94	45,400	no	
8	Rijk Zwaan	51-539	92	50,000	no	
9	Pop Vriend	Skarne PV1656	98	44,384	no	
10	Enza	Traverse	94	43,666	no	
11	Pop Vriend	PV1569	94	43,654	no	
12	Enza	Longhorn	99	43,369	no	
13	Enza	Frontier	94	42,361	no	
14	Rijk Zwaan	Hammerhead	90	42,034	yes	
15	Nunhems/BASF	Nembus	93	33,460	no	
16	Nunhems/BASF	Regor	94	32,286	no	
17	Rijk Zwaan	Bonnethead (51-722)	95	30,385	no	
18	Bejo	Patton	92	28,189	no	
19	Pinnacle	2051		29,211	no	
20	Rijk Zwaan	51-734		28,201	yes	
21	Bejo	Pershing (3592)	94	29,248	no	
22	Enza	Crosstrek	91	26,858	no	
23	Seminis/BAYER	Kona	96	25,954	yes	F300
24	Seminis/BAYER	Motutapu	87	25,669	yes	Thiram
25	Pop Vriend	Kiowa	96	24,814	no	
26	Seminis/BAYER	Jolo	95	24,642	yes	Thiram
27	Seminis/BAYER	Rangitoto	95	22,192	yes	Thiram

Dr. Carlos Avila's Seed Breeding Project

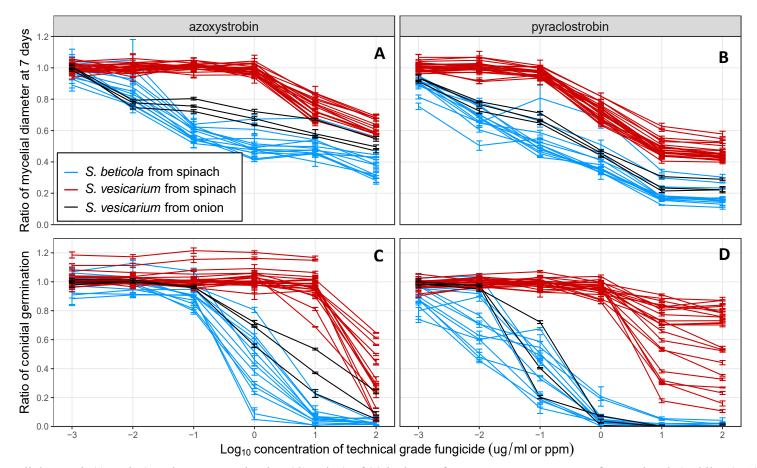
Plant Date: 12/20/2022 Population: ~ 2 mil

Stemphylium Leaf Spot of Spinach:

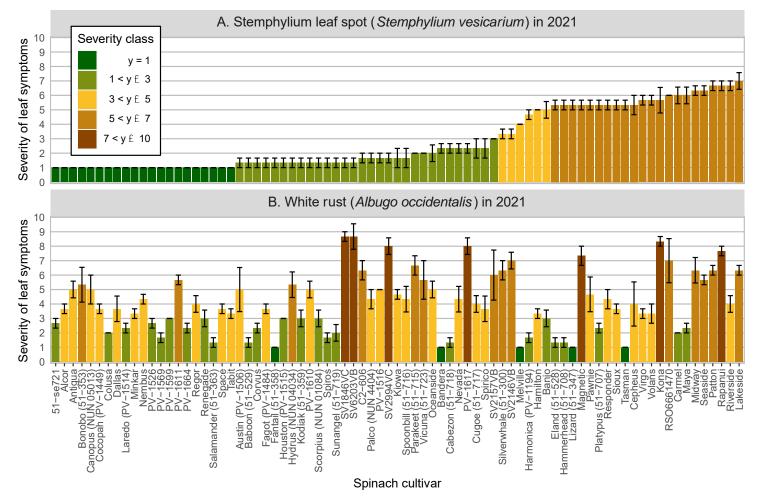
Susceptibility of Cultivars to *Stemphylium vesicarium*, Resistance of the Pathogens to Strobilurin (FRAC group 11) Fungicides, and Population Genetics of the Pathogen

Kayla Spawton & Lindsey du Toit, February 2023 Washington State University Northwestern Washington Research & Extension Center

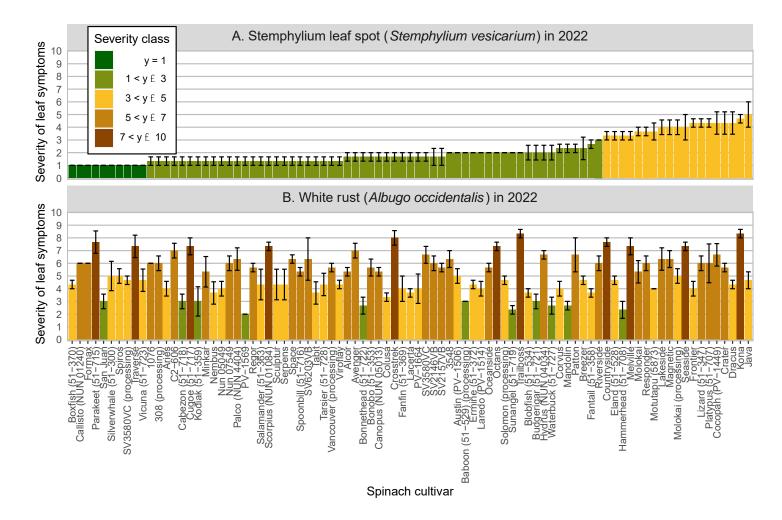
- **Background:** Historically, Stemphylium leaf spot of spinach was thought to be caused by the fungus *Stemphylium botryosum*. However, isolations completed at Washington State University (WSU) and the University of Arkansas (UA) over the last five years from spinach crops in Arizona, California, Florida, and Texas revealed at least two species of *Stemphylium* can cause this disease: 1) *S. vesicarium*, and 2) *S. beticola*. The isolates previously identified as *S. botryosum* are now known to be *S. beticola*, a species first described in 2017 from sugar beet crops in the Netherlands.
- Stemphylium vesicarium is the predominant species causing Stemphylium leaf spot of spinach in the Wintergarden area of Texas: Over the past five years, *S. vesicarium* was shown to be the cause of Stemphylium leaf spot for 26 of 271 spinach samples sent to WSU from the Wintergarden area of Texas (11 samples from the 2018-19 season, 11 from 2019-20, 2 from 2020-21, and 2 from 2021-22). Only one TX spinach sample was infected with *S. beticola*.
- Resistance of *Stemphylium vesicarium* isolates to strobilurin (FRAC group 11) fungicides: Isolates of *S. vesicarium* and *S. beticola* from spinach were tested for sensitivity to two FRAC group 11 fungicides commonly used on spinach: azoxystrobrin (e.g., Quadris) and pyraclostrobin (e.g., Cabrio). Most of the *S. vesicarium* isolates came from spinach crops in Texas and Florida, and all were far less sensitive to both fungicides than isolates of *S. beticola* (Fig. 1). The results were confirmed with greenhouse studies in which plants were sprayed with Quadris, Cabrio, or water and then inoculated with *S. vesicarium*. Neither of the fungicides was effective against the isolates of *S. vesicarium*. Additionally, all the isolates of *S. vesicarium* had a mutation in the *cytochrome b* gene (G143A) that is commonly associated with strobilurin fungicide resistance. In contrast, the isolates of *S. beticola* did not have this mutation. This explains why spinach growers in Texas have had difficulty controlling Stemphylium leaf spot with strobilurin fungicides.
- Susceptibility of spinach cultivars to Stemphylium leaf spot and white rust: Spinach cultivars were screened for resistance to Stemphylium leaf spot caused by S. vesicarium in a field trial near Crystal City, TX in each of three seasons. In 2020-21, 79 spinach cultivars were planted in three replicate plots per cultivar, at a baby leaf population density, and inoculated with S. vesicarium. White rust also developed in the trial from natural infection. Each plot was rated for severity of white rust eight weeks after planting, and severity of Stemphylium leaf spot a week later, on a 1 to 10 scale, with 1 = no symptoms and 10 = 100% of leaves symptomatic. There was a wide range in severity of symptoms among cultivars (P < 0.001) for both diseases (Fig. 2). Severity of Stemphylium leaf spot averaged 2.9 over the trial (ranged from 1.0 to 8.0 per plot). Of the 79 cultivars, 21 had no symptoms (mean severity of 1.0), 30 were partially resistant (1.1 to 3.0), 6 had moderate ratings (3.1 to 5.0), and 22 were susceptible (5.1 to 7.0) (Fig. 2A). White rust severity averaged 4.0 (range of 1.0 to 10.0 per plot). Five cultivars did not develop white rust (mean of 1.0), 24 were partially resistant (1.1 to 3.0), 29 had moderate ratings (3.1 to 5.0), 14 were partially susceptible (5.1 to 7.0), and 7 were highly susceptible (7.1 to 8.7) (Fig. 2B). No cultivar was completely resistant to both diseases. Salamander, PV 1569, Colusa, Sunangel, Spiros, Baboon, and Fantail had mean ratings ≤ 2.0 for both diseases. A similar trial was completed in 2021-22 with 81 spinach cultivars planted at a baby leaf population density, and 6 cultivars planted at a processing population density (Fig. 3). Of the 87 cultivars, 46 had been planted in the 2020-21 trial (Fig. 4). Severity of Stemphylium leaf spot in the 2021-22 trial ranged from 1.0 to 7.0, with an average of 2.1. Of the 87 cultivars, 10 had a mean rating of 1.0, 58 had a mean severity ranging from 1.1 to 3.0 (partially resistant), and 19 had a mean severity of 3.1 to 5.0 (moderate) (Fig. 3A). White rust severity ranged from 1.0 to 9.0, with an average of 5.2. None of


the cultivars was completely resistant to white rust (mean of 1.0), 11 were partially resistant (1.1 to 3.0), 32 were moderate (3.1 to 5.0), 33 were partially susceptible (5.1 to 7.0), and 11 were highly susceptible (7.1 to 8.3) (**Fig. 3B**). Of the 10 cultivars that exhibited no symptoms of Stemphylium leaf spot, one was partially resistant to white rust: San Juan. Of 11 cultivars partially resistant to white rust, nine were partially resistant to Stemphylium leaf spot: Cabezon, Kodiak, PV-1569, Bonnethead, Baboon, Sunangel, Waterbuck (51-727), Budgerigar, and Mandolin. The 2022-23 trial was planted in Dec. 2022 with 63 spinach cultivars.

- S. vesicarium isolates from 2 Texas spinach crops with Stemphylium leaf spot had less genetic diversity than S. vesicarium isolates from the seed lots used to plant those crops: Isolates of S. vesicarium were collected from two spinach crops in Texas in 2020, and were compared genetically to isolates obtained from the seed lots used to plant those crops. When the isolates were characterized and grouped genetically, those from Field 1 (n = 27 isolates) were placed into 4 genetic groups, while the isolates from the seed lot planted in that field (n = 33 isolates) were far more diverse, with 24 groups. Similarly, isolates from leaves in Field 2 (n = 34) were placed into 4 genetic groups, while isolates from the seed lot used to plant that crop (n = 26) were in 24 groups. A majority of isolates from the two fields were placed in the same genetic group. Six isolates from each of these four S. vesicarium populations were tested for pathogenicity on spinach. All 12 isolates from leaf samples were pathogenic but only 2 of the 12 seed isolates were pathogenic.
- Seed isolates of *S. vesicarium* that were pathogenic on spinach were less diverse than seed isolates of *S. vesicarium* that were not pathogenic on spinach. *S. vesicarium* isolates from 10 seed lots (two seed lots from each of Denmark, France, the Netherlands, New Zealand, and the Pacific Northwest USA) were tested for genetic diversity. For 5 of the 10 seed lots, a majority of the isolates tested were not pathogenic on spinach, and the number of genetic groups of the *S. vesicarium* isolates from these lots ranged from 20 to 33. For the other 5 seed lots, a majority of the isolates tested were pathogenic on spinach, and the number of genetic groups of the isolates tested were pathogenic on spinach, and the number of genetic groups of the isolates from these lots ranged from 2 to 21. The results show that spinach seed can be colonized by pathogenic and non-pathogenic strains of *S. vesicarium*, and there tends to be much less genetic variability on seed lots infected primarily with isolates pathogenic on spinach than those infected primarily with non-pathogenic isolates.
- **Ongoing research:** The spinach cultivar trial planted near Crystal City, TX in Dec. 2022 will be rated for severity of Stemphylium leaf spot and white rust in Feb. 2023, and results compared with cultivar ratings from the previous two field trials. In addition, more isolates of *S. vesicarium* from the 12 spinach seed lots and 2 Texas field crops described above will be tested genetically to understand the population genetics of *S. vesicarium* isolates associated with spinach seed and spinach crops.


Acknowledgements

We thank the Texas Wintergarden Spinach Producers' Board, Puget Sound Seed Growers' Association, Washington State Commission on Pesticide Registration, ARCS Foundation, and Western SARE for funding this project; seed company personnel, seed growers, crop consultants, and other agricultural companies for in-kind support; and the Vegetable Seed Pathology team at Washington State University (Michael Derie, Marilen Nampijja, Tomasita Villaroel, and Babette Gundersen) for technical support. We also acknowledge the hard work of our collaborators in Texas, including Dr. Larry Stein, Ed and Paige Ritchie, Jimmy Crawford, Mike Phillips, and their respective teams who made the field trials possible.


> For more details, contact: Kayla Spawton (<u>kayla.spawton@wsu.edu</u>) or Lindsey du Toit (<u>dutoit@wsu.edu</u>).

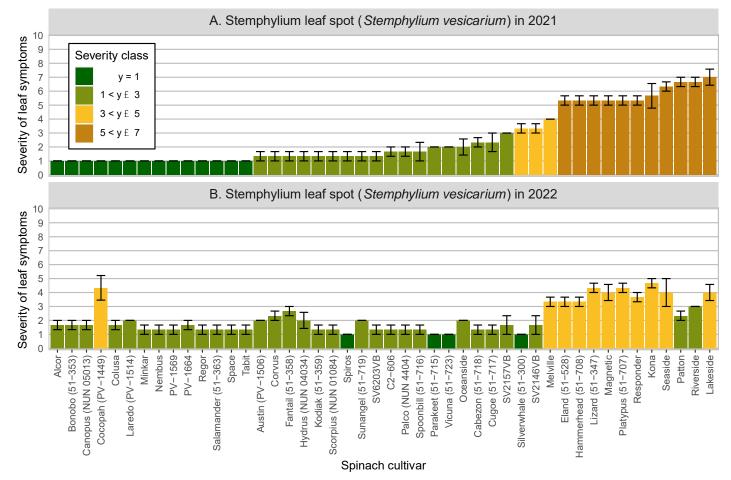

Fig. 1. Mycelial growth (**A** and **B**) and spore germination (**C** and **D**) of 23 isolates of *Stemphylium vesicarium* from spinach (red lines), 13 isolates of *S. beticola* from spinach (blue lines), and 3 isolates of *S. vesicarium* from onion (black lines) growing on agar medium amended with technical grade azoxystrobin (**A** and **C**) or pyraclostrobin (**B** and **D**) at 0.001, 0.01, 0.1, 1, 10, and 100 ppm. The ratios for mycelial growth and conidial germination were calculated as the colony diameter or percentage spore germination of each isolate on agar medium at each fungicide concentration divided by the colony diameter or percentage spore germination, respectively, of that isolate on agar medium not amended with fungicide.

Fig. 2. Mean severity of Stemphylium leaf spot caused by *Stemphylium vesicarium* (**A**), and white rust caused by *Albugo occidentalis* (**B**), for each of 79 spinach cultivars in a field trial in Crystal City, TX in 2020-21. Disease ratings were completed 9 and 8 weeks after planting, respectively, on a scale of 1 to 10 (1 = no symptoms, and 10 = 90-100% of the canopy with symptoms). Each cultivar was planted in three replicate plots, with each plot 10 feet long x 1 bed wide. Plots were inoculated with a mix of three isolates of *S. vesicarium* from TX. White rust developed as a result of natural infection. Cultivars are arranged in the same order in **A** and **B** to highlight differences in susceptibility to the two diseases. Ratings are color-coded based on mean severity of symptoms for each disease.

Fig. 3. Mean severity of Stemphylium leaf spot caused by *Stemphylium vesicarium* (**A**), and white rust caused by *Albugo occidentalis* (**B**), for each of 87 spinach cultivars planted in a field trial in Crystal City, TX in 2021-22. Disease ratings were completed on 15 Feb. 2022, 9 weeks after planting, on a scale of 1 to 10 (1 = no symptoms, and 10 = 90-100% of the canopy with symptoms). Each cultivar was planted in three replicate plots at 2.5 million seed/acre (except for 6 processing cultivars planted at 0.5 million seed/acre: 308, Vancouver, Baboon, Molokai, SV3580VC, and Solomon), with each plot ~3.05 m long x 1 bed wide. Plots were inoculated with a mix of three TX isolates of *S. vesicarium*. White rust developed as a result of natural infection. Cultivars are arranged in the same order in **A** and **B** to highlight differences in susceptibility to the two diseases. Ratings are color-coded based on mean severity of symptoms for each disease.

Fig. 4. Mean severity of Stemphylium leaf spot caused by *Stemphylium vesicarium* for each of the 46 cultivars planted in both the 2020-21 (**A**) and 2021-22 (**B**) field trials in Crystal City, TX. Disease ratings were completed 9 weeks after planting, on a scale of 1 to 10 (1 = no symptoms, and 10 = 90-100% of the canopy with symptoms). Each cultivar was planted in three replicate plots, with each plot 10 feet long x 1 bed wide. Plots were inoculated with a mix of three isolates of *S. vesicarium* from TX. Cultivars are arranged in the same order in **A** and **B** to highlight similarities in susceptibility of the cultivars between the two trials. Ratings are color-coded based on mean severity of symptoms.

BEYOND SALAD: HARVESTING SPINACH SEED FOR GRAIN CONSUMPTION

Carlos A. Avila^{1,2,3}, Samuel Zapata^{4,5}, Larry Stein^{2,6}

¹Texas A&M AgriLife research and Extension Center, Weslaco, TX; ²Department of Horticultural Sciences, Texas A&M University, College Station, TX; ³Vegetable and Fruit Improvement Center (VFIC), Texas A&M University, College Station, TX; ⁴Texas A&M Higher Education Center at McAllen, TX; ⁵Department of Agricultural Economics, Texas A&M University, College Station, TX; ⁶Texas A&M AgriLife Research and Extension Center, Uvalde, TX

In response to consumer and producer demands, Texas A&M AgriLife in collaboration with the Wintergarden Spinach Producers Board have been working on developing solutions to increase the spinach industry competitiveness. Texas is one of the leading spinach-producing states in the US for both, the fresh and canning markets. Unfortunately, the higher-value fresh market production where producers make most of their profit, is constantly challenged by endemic diseases that significantly reduce producers' income. Even when resistant cultivars and cultural practices are used by growers, mild disease damage can happen, negatively affecting spinach quality and therefore reducing its commercial value for fresh market. In contrast, under those conditions, spinach could still produce significantly high yields of seed for grain with valuable nutritional content that can fetch premium prices for the gluten-free niche markets. Intriguingly, little or no deliberate efforts have been made to evaluate spinach seed yield and nutritional potential as food. This project funded by the Specialty Crop Block Grant program from the Texas Department of Agriculture evaluated spinach grain quality as a potential source of income at the end of the crop cycle when producers have finished leaf harvesting as an alternative source of income to the farmer.

1) Nutritional content of Spinach seed for its potential use as food additive

We performed measurements on grain nutritional content on USDA accessions at the Texas A&M AgriLife Research and Extension Center – Weslaco, TX. Seeds including the seed coat, were prepared for evaluation by grinding and performing solvent extractions as per standard protocol.

1.1 Amino acid content

Results indicate that there is a high diversity in seed amino acid content in spinach accessions (table 1). For all 19 amino acids evaluated, a wide range in content was observed. For example, aspartic acid population mean was 106.5 nmol/g with a minimum of 36.2 nmol/g and a maximum of 353.9 nmol/g (table 1). Similar results were observed in the rest of amino acid measured. This diversity can be used to improve nutritional content seed for grain (e.g. human feeding). In addition to it nutritional value, high amino acid content in seeds has been correlated to improved vigor and germination. Those traits are of high interest to the industry and producers to have uniform plant density in the field.

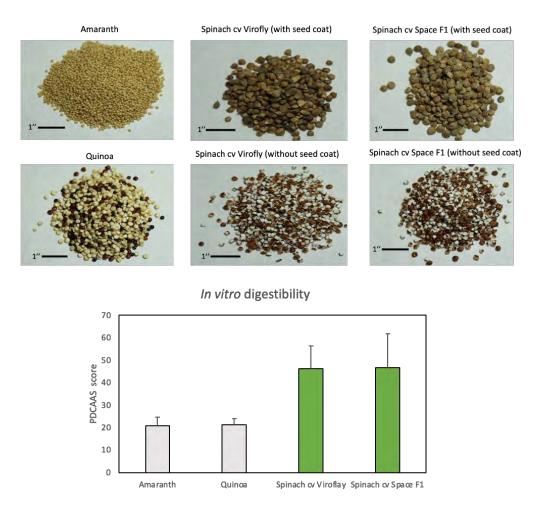
nmol/m	Aspartic	Glutamic								
g	Acid	Acid	Asparagine	Serine	Glutamine	Histidine	Threonine	Glycine	Arginine	Alanine
Mean	106.5	214.2	23.8	70.9	16.1	49.4	50.4	158.0	106.7	68.9
Std Dev	56.2	103.6	15.7	26.3	11.2	18.8	23.4	65.7	40.7	27.8
Min	36.2	84.2	5.0	20.2	0.0	9.9	13.5	61.3	34.9	22.9
Max	353.9	662.8	56.3	158.8	68.3	129.0	150.8	444.6	264.5	156.4
Range	317.7	578.6	51.4	138.7	68.3	119.1	137.3	383.3	229.5	133.5

Table 1. Summary of Amino acid content in Spinach USDA collection (nmol/ mg). Grains from242 USDA accessions were grinded and measured by UHPLC.

nmol/mg	Tyrosine	Cystine	Valine	Methionine	Phenylalanine	Leucine	Tryptophan	Isoleucine	Lysine
Mean	16.5	28.7	61.3	4.4	49.8	43.0	27.5	67.4	39.4
Std Dev	7.5	19.7	32.8	2.0	32.4	21.1	59.8	26.2	15.1
Min	4.1	1.7	18.4	1.3	11.4	12.5	1.5	25.0	8.0
Max	47.0	93.2	196.7	9.5	187.5	145.8	259.2	151.3	81.5
Range	42.9	91.5	178.4	8.2	176.1	133.3	257.7	126.4	73.5

1.2 Mineral Content

Results indicate that there is a high diversity in seed mineral content in spinach accessions (table 2). For all 8 minerals evaluated, a wide range in content was observed. For example, K population mean was 9998.1 mg/kg with a minimum of 3227 mg/kg and a maximum of 24770 mg/Kg (table 1). Similar results were observed for Na, Ca, Mg, P, and S but not much range was observed in Mn and Cu. This diversity can be used to improve nutritional content seed for grain (e.g. human feeding). In addition to it nutritional value, mineral content in seeds has been correlated to improved vigor and germination. Those traits are of high interest to the industry and producers to have uniform plant density in the field.


Table 2. Summary of Mineral content in Spinach USDA collection (mg/ kg). Grains from 242USDA accessions were grinded and measured by ICP-OES.

	Na (mg/Kg)	Ca (mg/Kg)	Mg (mg/Kg)	P (mg/Kg)	K (mg/Kg)	S (mg/Kg)	Mn (mg/Kg)	Cu (mg/Kg)
Mean	2233.0	5613.2	3424.0	4045.6	9988.1	3632.7	72.6	5.2
Std	1154.8	1705.3	675.8	708.4	3328.9	1571.1	43.1	2.3
Min	187	1570	1792	1580	3227	1579	10	1.7
Max	8289	10200	5370	5932	24770	8580	278	18.1
Range	8102	8630	3578	4352	21543	7001	268	16.4

1.3 Protein digestibility

Protein digestibility in spinach grain was evaluated using standard Megazyme Protein Digestibility Assay Kit (Medallion Labs, MN), no human or animal test was performed. Seedcoat was removed from spinach seeds (Fig 1) and seeds from relative crop species commercially grown for grain Amaranth and Quinoa were included as control for comparison.

Results indicate that protein in spinach provides ~50% of all amino acids required in the diet as compared with Amaranth and Quinoa protein in grain that provides ~20% of all amino acid required. Therefore, spinach grain has a higher nutritional content as compared with highly demanded Amaranth and Quinoa grains.

Figure 1. Spinach, Amaranth and Quinoa grain in vitro protein digestibility. Protein Digestibility Corrected Amino Acid Score (PDCAAS) indicate that protein will provide estimated % of all the amino acids required in the diet (higher PDCAAS score indicates better protein quality).

2) Seed for grain yield potential

Trials were established to evaluate a diversity panel of 320 spinach accessions from the USDA national germplasm system and three commercial cultivars to determine seed yield potential in both wild and commercial germplasm using ~2.5 ft² plots. Out the 320 accessions evaluated, only 232 were able to bolt and produce seed with an average of 28.38 g/plot, with a minimum of 2.599 g/plot and maximum of 166.5 g/plot , indicating a great potential for grain production (Figure 2). Commercial cultivars Viroflay, Freja and Banjo yielded 4.05, 4.13, and 2.60 g/plot; respectively. Low yield in commercial cultivars may be the reflect of breeding efforts to improve bolt resistance in spinach. In summary, results indicate there is a great potential to increase seed production not just for their utilization as grain but also to improve commercial seed yields that can potentially result in reduction of seed cost to producers.

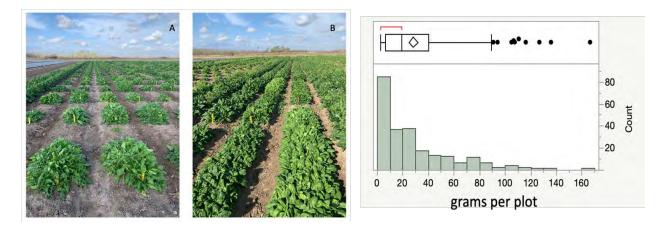


Figure 2. Evaluation of spinach USDA diversity panel (A) and commercial cultivars (B) for seed grain yield

3) Development of breeding tools to improve seed grain nutritional content

3.1 Molecular tools for Amino Acid selection in spinach grain

A genome-wide association studies (GWAS) was conducted to identify genomic regions responsible for 16 essential amino acids content in spinach grain by using single-locus (three models) and multi-locus (six models) methods. Amino acid content was measured by HPLC on a diverse panel of 223 USDA spinach accessions (see above). A total of 94 significant SNPs detected by both methods. The highest and lowest number of significant SNPs were identified for Threonine (26 SNPs) and Glycine (3 SNPs). 24 SNPs were found in more than one amino acid, in which, 16 SNPs were identified in more than three amino acids, indicating pleiotropic genetic control for 16 amino acids in spinach grain. The results of this study could guide future experimental validation, helping to understand the genetic mechanisms of amino acids content

that eventually, could accelerate the genetic improvement of amino acids content in spinach grain.

3.2 Molecular tools for Mineral Content selection in spinach grain

The aim of this study was to identify the genetic basis of eight mineral elements (Ca, Cu, K, Mg, Mn, Na, P, and S) in spinach grain by using single-locus (three models) and multi-locus (six models) methods of genome-wide association studies (GWAS), using 223 USDA spinach accessions. Grain mineral content was measured by ICP-OES. A total of 55 SNPs were detected by both methods, in which, 8 and 43 SNPs were identified by single and multi-locus methods, respectively, and 2 were common between them. The highest number of significant SNPs were found for S (13 SNPs), followed by Na (12), K (8), and Ca (7) and the remaining each of them had 4 SNPs. Only two SNPs were common between Ca and Mg, indicating the possibility of pleiotropic genetic control. Identified quantitative trait loci (QTL) are valuable resources for future genetic studies, gene functional characterization, helping to understand the complex molecular mechanisms of mineral uptake, transport in spinach.

Ongoing work

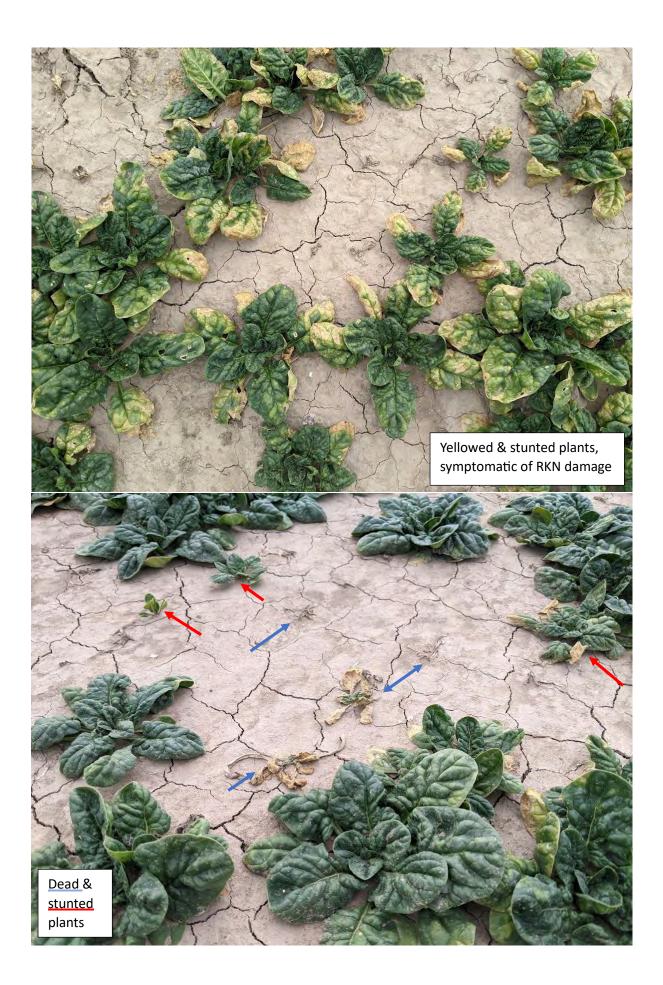
- Commercial cultivar multi-year and multi-location yield trials at Wintergarden and Rio Grande Valley
- Estimation of production costs

Acknowledgements

- We would like to than Mr. Ed Ritchie, III at Tiro Tres Farms, Crystal City and the Wintergarden Spinach Production board for supporting this project including on farm field trials.
- This project was funded by the Texas Department of Agriculture, Specialty Crop Block Grant #SC-2021-18


- Root knot nematode (RKN), species pending molecular ID
- North-northeast edge of disease nursery
- Patchy bare areas, stunting, yellowing, dead plants
- Possibly exacerbated by fungal pathogens
- Full impact is unknown
 - What population threshold is required for meaningful economic/plant health impact
 - Geographic distribution is unknown
- If you have seen something similar on your farm, please contact me!

830.988.6151


kimberly.cochran@ag.tamu.edu

Kimberly Cochran, Ph.D.

Plant Pathology Extension Specialist

	Targeting Stemphylium vesicarium with Fungicide Sprays Trial ID: Spinach 2022 Mike Phillips, Cargile Consulting								
Trt No.	Туре	Treatment Name	Form Type	Rate Unit					
1	СНК								
2	FUNG	LUNA SENSATION	SC	7 FL OZ/A					
3	FUNG	REASON	SC	7 FL OZ/A					
4	FUNG	MERIVON	SC	7 FL OZ/A					
5	FUNG	CABRIO	WG	16 OZ WT/A					
6	FUNG	VELTYMA	SC	10 FL OZ/A					
7	FUNG	MIRAVIS PRIME	SC	13.4 FL OZ/A					
8	FUNG	INSPIRE	EC	7 FL OZ/A					
9	FUNG	INSPIRE SUPER	SC	20 FL OZ/A					
10	FUNG	GWN-10320 (ECOSWING)	SC	24 FL OZ/A					
11	FUNG	GWN-9999	SC	24 FL OZ/A					
12	FUNG	FUNGICIDE TO BE ADDED							

Replications: 4, Untreated treatments: 1, Design: Randomized Complete Block (RCB), Treatment units: US standard, Treated 'Plot' experimental unit size Width: 1 meters, Treated 'Plot' experimental unit size Length: 5.5 meters, Application amount: 20 GAL/AC, Mix size: .8 L, Format definitions: G-All7.def, G-All7.frm

	2022 - 2023 Spinach Fungicide Trial for White Rust Control Larry A. Stein, Texas A&M AgriLife Extension Service Leslie Dominguez, Zavala CEA-AG/NR
	TREATMENT
1	UTC
2	Water treated check
3	Double Nickel 1qt/A plus non-ionic surfactant
4	LifeGard 4.5 oz/100 gals alt. LifeGard 4.5 oz/100 gals plus Reason 8 fl.oz/A plus NIO
5	Double Nickel 1 qt/A plus NIO alternated with LifeGard 4.5 oz/100 gals plus Reason 8 fl.oz/A plus NIO
6	Double Nickel 1qt/A plus NIO alternated with Reason 8 fl.oz/A plus NIO
7	Reason 8 fl.oz/A alternated with Reavus 8 oz/A
8	Oso 6.5 oz/A plus NIO
9	LifeGard 4.5 oz/100 gals plus NIO
10	Double Nickel 1 qt/A plus NIO alternated with LifeGard 4.5 oz/100 gals plus Merivon 8 fl.oz/A plus NIO
11	Oso 6.5 oz/A plus NIO alternated with LifeGard 4.5 oz/100 gals plus Merivon 8 fl.oz/A plus NIO
12	LifeGard 4.5 oz/100 gals alternated with LifeGard 4.5 oz/100 gals plus Merivon 8 fl.oz/A plus NIO
13	Reason 8 fl.oz/A alternated with Merivon 8 fl.oz/A
14	Veltyma 10 oz/A
15	Timorex 35fl.oz/A
16	Check

Sponsors

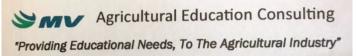
AGRI-ENTERPRISES, LLC

ZAVALA COUNTY BANK

We create chemistry

Sponsors

S


Your Touchstone Energy[®] Cooperative K

Sponsors

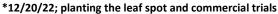
Wintergarden Spinach Producers Board

MARCEL VALDEZ

CONSULTANT

Cellular: 830-448-6081 Lpaggie81@hotmail.com P.O. Box 35 La Pryor Texas, 78872

J & K Farms and J & B Farms


A tremendous <u>THANK YOU</u> to all who contributed to the preparation of this field day, from the sponsors listed in this program, to the farm laborers and the cooks. No doubt, without their help this event would not be possible.

*12/01/22; planting the white rust trial

*02/03/2023; Inoculating anthracnose

Spinach Field Day February 16, 2022 Tiro Tres Farms Crystal City, TX